Predictive time series analysis of stock prices using neural network classifier
نویسنده
چکیده
The work pertains to developing financial forecasting systems which can be used for performing an in-depth analysis of the stocks prices, downloading/importing data from the various locations and analyzing that data and producing charts to determine statistical trends. There on it describes to perform a time series predictive analysis of the stocks data that we have and plot the various opening and closing prices of the stocks and then convert it to time series data so that we can proceed and perform a time series predictive analysis thereby predicting the h-days closing prices of a certain stock using the neural networks classification algorithm. The implementation is done using the open source software R & WEKA thereby aiming to reduce the analytics cost for any organization. Keywords—Stock market predictions, neural networks, data mining classification algorithms.
منابع مشابه
Multi-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks
Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...
متن کاملForecasting Crude Oil Price and Stock Price by Jump Stochastic Time Effective Neural Network Model
The interacting impact between the crude oil prices and the stock market indices in China is investigated in the present paper, and the corresponding statistical behaviors are also analyzed. The database is based on the crude oil prices of Daqing and Shengli in the 7-year period from January 2003 to December 2009 and also on the indices of SHCI, SZCI, SZPI, and SINOPEC with the same time period...
متن کاملGyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods
In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...
متن کاملForecasting Stock Price using Hybrid Model based on Wavelet Transform in Tehran and New York Stock Market
Forecasting financial markets is an important issue in finance area and research studies. On one hand, the importance of prediction, and on the other hand, its complexity, have led to huge number of researches which have proposed many forecasting methods in this area. In this study, we propose a hybrid model including Wavelet Transform, ARMA-GARCH and Artificial Neural Network (ANN) for single-...
متن کاملPrediction of Stock Price using Particle Swarm Optimization Algorithm and Box-Jenkins Time Series
The purpose of this research is predicting the stock prices using the Particle Swarm Optimization Algorithm and Box-Jenkins method. In this way, the information of 165 corporations is collected from 2001 to 2016. Then, this research considers price to earnings per share and earnings per share as main variables. The relevant regression equation was created using two variables of earnings per sha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014